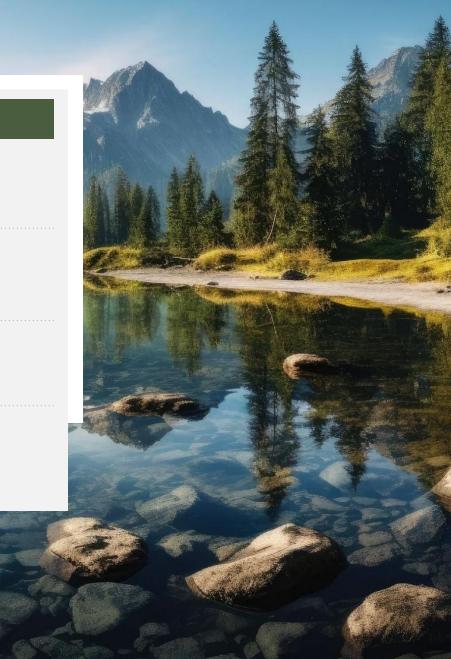
OpenMinds

NextEra Renewables Project Final Report


February 2025

NEXTera ENERGY

Agenda

NextGen | Student Impact Project Final Presentation

1	Introductions & Project Overview
2	Methods
3	Findings
4	Trends, Recommendations, and Implications

Introductions & Project Overview

NextGen Renewables & AI Team

Project Shepherds

David Pruner | Executive Director, TEX-E; Rice Business Neil Fromer | Executive Director, Resnick Sustainability Institute, CalTech

Andrew van Baal

Michigan | MS Energy Systems '26 Michigan | Corporate Sustainability & ESG '25

Work experience:

- **Michigan Athletics**
- Environmental **Defense Fund**
- **Consumers Energy**
- **General Motors**

Debjyoti Chatterjee

UT Austin | PhD, Electrical Engineering '26

Work experience:

•

- National Renewable •
 - Energy Lab (NREL) Hitachi Energy
- **KBH Energy Center** .
- **Texas Exchange for Energy and Climate** Entrepreneurship (TEX-E)

Hillary McKenzie

Michigan | MBA/MS '25

Work experience:

- NextEra
- Google •
- Salesforce •
- Hewlett Packard • Enterprise
- Weatherford International

Hannah Murdoch

Stanford | MS/MBA '25 UVA | Engineering '16

Work experience:

- BlackRock • (summer)
- **US** Department • of Energy
- Union Square Ventures
- McKinsev
- GoogleX

Yogi Nishanth

Harvard | ALM Sustainability'26 Rice | MBA'16

Work experience:

- Founder, CBase Al
- Capital One
- JP Morgan Chase
- Oportun
- **Credit Agricole**

经公会

https://openminds203x.org/

PAGE 4

Project Overview

Driving questions

What is the full potential in the US for **Solar**, **wind, and nuclear power to meet demand from AI** to address the Dual Challenge in the next 5-10 years?

Key Findings

What are the **levers to accelerate renewable power adoption** (e.g technological, software, economic, policy, and/or public opinion) for **project developers and hyperscalers?**

Approach

) Energy Demand and Supply

- Projects data center electricity consumption through 2030
- Append renewable energy supply potential, price, and policy data.
- Develop in-house Renewable Compute Index (RCI) model to highlight states with relatively high renewable energy and low data center demand

2) Renewable Readiness Scorecard

Evaluates states across three weighted criteria:

- Business Attractiveness (50%): Economic and infrastructure factors
- Renewable Energy Potential (35%): Wind and solar resource quality
- Battery Storage Potential (15%): Market design and policy support

Leading states and markets continue to be attractive won't slow down - particularly TX, NV and AZ.

Fast followers - including Arizona and Nevada - offer attractive renewable resources, business environments and permitting, and land availability to scale quickly

Hyperscalers could look to expand into states with high RCI such as NM, MT, MN, CO, and SD.

Repeatable transaction structures that compensate for 24/7 clean electricity and capacity can help developers + offtakers go farther, faster (e.g., Clean Transition Tariff in NV)

Methods

Energy Demand & Renewable Compute Index (RCI)

Energy Demand Projection

Load & Projections: Uses 2023 data as a baseline and forecasts demand growth to 2030 Growth Assumptions: State and regional growth rates (10-14%), with higher increases for top RCI states Efficiency Gains: Accounts for annual power usage effectiveness improvements

Renewable Energy Potential: National Renewable Energy Laboratory data on solar and wind capacity Energy Storage & Grid Capacity: Energy Info. Admin. data on existing and planned battery storage Policy Impact: Renewable Portfolio Standards (RPS) and cost caps to evaluate incentives for clean energy adoption

Renewable Compute Index

Normalized Scores: Normalize demand, supply, and policy factors across states RCI: 40%* Supply - 35%* Demand - 10%* Price + 10% * RPS + 5% * Cost Cap Identify states with relatively higher renewable energy and lower data center demand

Renewables Readiness Scorecard

Analysis Framework

Approach: Evaluate state attractiveness for renewable energy deployment to meet data center power needs

Scope: Analysis of 14 key states selected based on anticipated data center activity⁽¹⁾

Methodology: Composite score based on three weighted criteria, each evaluated using specific metrics and scored from 1 (low) - 5 (high) to determine final state rankings

Criterion 1 (50%) Business Attractiveness

Metrics:

- Renewable Portfolio Standards
- Financial incentives
- Solar and wind markets
- Grid modernization
- Land availability and cost
- Innovation ecosystem
- Workforce

Criterion 2 (35%) Renewable Resource Availability

Metrics:

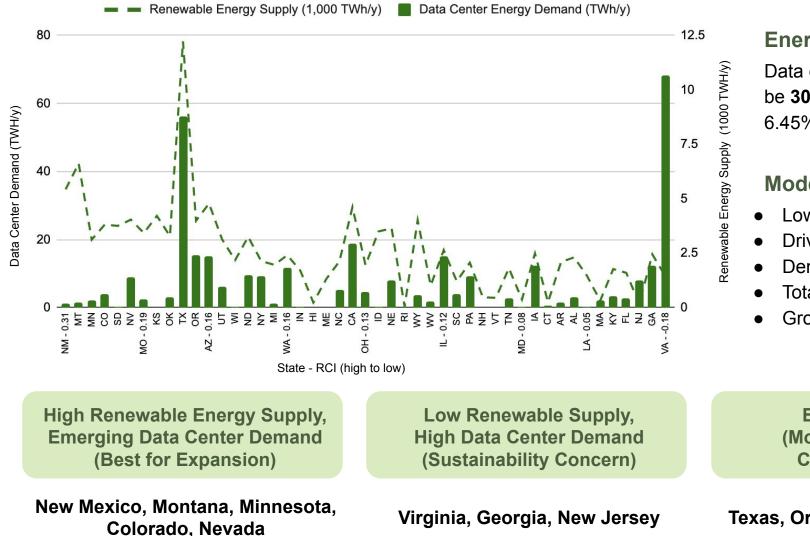
- Wind Energy Potential (80m hub height)
- Solar Irradiance (kWh/m²/day)

Criterion 3 (15%) Energy Storage Potential

Metrics:

- Incentives
- Interconnection rules
- Market design
- Renewable penetration

1) States evaluated: VA, TX, CA, IL, OR, AZ, IA, GA, WA, PA, IN, AR, LA and NV


https://openminds203x.org/

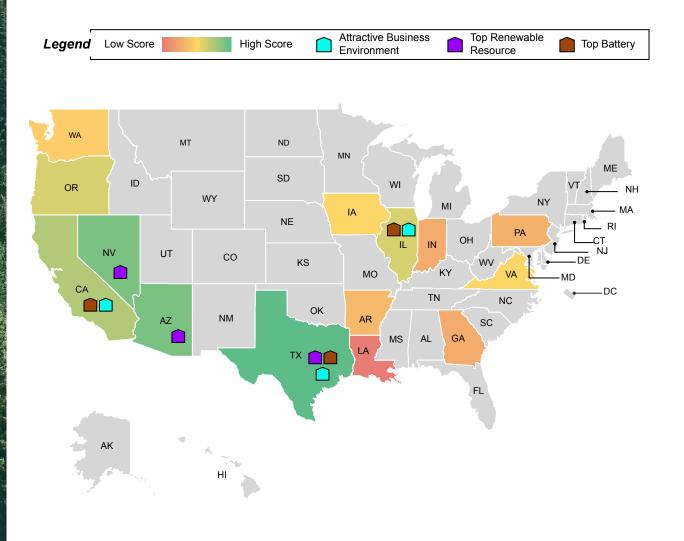
Findings

Energy Demand & Renewable Compute Index (RCI) Findings

Energy Demand

Data center energy demand is projected to be **306 - 391 TWh/y by 2030**, representing 6.45% - 8.10% of total energy demand

Model Advancement Impact


- Lower compute cost & energy per task
- Drives usage increase (Jevon's Paradox)
- Demand distributed to edge compute
- Total data center demand increases
- Growth limited by chip supply, not demand

Balanced States (Moderate Potential -Careful Planning)

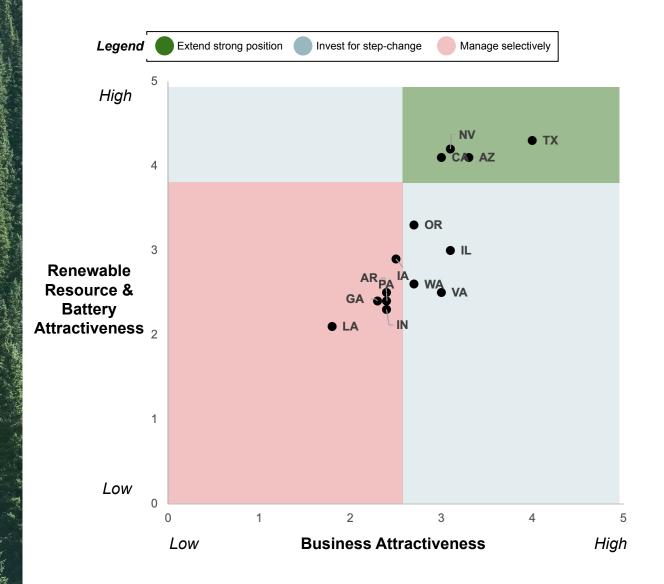
Texas, Oregon, Nevada, Missouri

Renewables Readiness Scorecard: Results

Texas: Primary Strategic Focus

- Trump prioritizing for data center development
 - First Stargate data center with co-located power gen at Lancium Clean Campus in Abilene
- Deregulated market structure allows multiple revenue streams, driving strong project economics
- Abundant affordable land near major metro areas
- Fastest interconnection and streamlined permitting

Nevada: High Growth Market


- 50% renewable requirement by 2030 driving demand
- Clean Transition Tariff structure with major Tech companies
- Strong state incentives for development
- Significant battery storage expansion planned

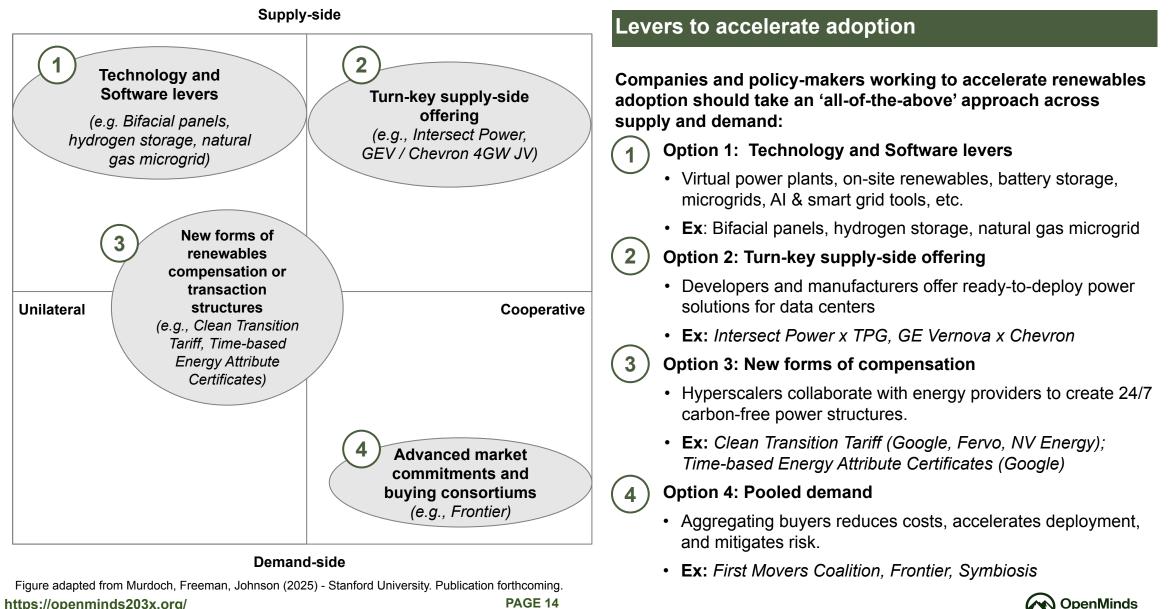
Arizona: Emerging Opportunity

- Strong solar resources with competitive power costs
- \$14 billion in expected capital investment
- State and local governments working to reduce NIMBYism

Renewable Readiness Scorecard: Strategic Recommendations

Speed to Market is Critical: Next Steps for Developers

- Accelerate development pipeline near planned Al facilities in TX
- Create hybrid PPA structures combining firm capacity with renewable generation
- Develop co-located power solutions that can meet demand quickly while awaiting grid connection
- Capitalize on Nevada's Clean Transition Tariff structure for immediate tech partnerships
- Establish early presence in Arizona's growing market before \$14B capital investment wave


The Most Critical Areas to Monitor

- Federal policy shifts and changes to permitting and interconnection reform
- Competition for premium interconnection positions
- Clean Transition Tariff expansion to more states

Trends, Recommendations, and Implications

Levers for Accelerating Renewables Adoption

https://openminds203x.org/

PAGE 14

Implementation Roadmap/Strategy

Three-phased approach

Maximize existing assets to serve immediate gaps in hyperscaler electricity demand

- Consider brownfield expansions in top-ranked states, including uprates and capacity additions within existing portfolio
- Deploy grid-enhancing technologies alongside customers and partners
- Implement virtual power
 plants for demand optimization

Innovate in both technologies and transaction structures to prepare for 2030s load growth

- Consider 'turnkey' offerings or joint ventures tailored to hyperscaler customers in high-growth markets including Arizona, Texas, Nevada
- Explore a range of cost-effective storage options beyond Li-ion, including pilots with 8-10 hour storage durations

Scale for 2030 load growth and beyond

3

- Develop scaled, hybrid renewable systems combining multiple technologies to satisfy data center reliability requirements
- Partner with hyperscalers to expand transaction structures (Clean Transition Tariffs, T-EACs) that better compensate renewable energy solutions

Wrap-Up

Takeaways for NextEra

- Developing in states with federal support should prove a winning strategy: Move quickly in states that Trump administration is positioning for energy and data center hubs
- Lean-in to creative transaction structures: The opportunities and case studies emerging are promising for developers, particularly of NextEra's size and scale
- Monitor the changing policy landscape: Stay ahead of the game by placing contingency terms in contracts/structures

OpenMinds Implications

• Jevons paradox will hold with DeepSeek: Improved efficiency gains will be offset by larger investment amounts in training and expanding models, not diminishing AI's energy consumption and subsequent opportunities for developers.

• First mover advantage is imperative: Hyperscalers need to build fast in high renewables supply states like NV and NM before land availability concerns mount, as developers will have ample time and natural resources to meet demand.

 Methane and Carbon Capture Systems (CCS) will have increasingly important roles to play: As hyperscalers face commercial pressure, renewables will develop alongside combined cycle. Data centers offer a strong demonstration case for stricter methane mitigation and CCS systems

Key Takeaways

Solving for the Dual Challenge.

Appendices

Criterion 1: Business Attractiveness Rubric (weight: 50%)

Metrics		Score					
	Weight	1	2	3	4	5	Rationale
RPS	10%	No RPS	Minimal RPS, weak targets	Moderate RPS, clear targets	Strong RPS, ambitious targets	100% RPS, robust benchmarks	 Aggressive RPS targets provide long-term market signals and drive deployment.
Financial Incentives	15%	No incentives, minimal impact	Few incentives, modest impact	Moderate incentives, noticeable impact	Broad incentives, significant impact	Comprehensive incentives, wide support	 Financial incentives can significantly impac project economics and accelerate adoption
Solar and Wind Markets	20%	Very limited progress, poor infra	Limited progress, infra gaps	Good progress, some infra development	Substantial progress, strong infra	Leading progress, robust infra	• An understanding of trends in the markets for utility-scale solar and wind power is essential for developers making future business decisions.
Grid Modernization	15%	No actions in Q3 2024	1-2 actions in Q3 2024	3-5 actions in Q3 2024	6-9 actions in Q3 2024	10+ actions in Q3 2024	An updated grid infrastructure is crucial to accommodating the growing influx of renewable energy sources and advanced technologies.
Land Availability & Cost	20%	Very high costs, limited land	High costs, limited/modera te land	Moderate costs, adequate land	Lower costs, significant agricultural land	Low costs, extensive agricultural land	 Access to large swaths of land for renewables deployment is essential to accelerate the transition. Agricultural land usually fits the desired criteria.
Innovation Ecosystem	5%	Avg score 1.0-1.49, bottom 10	Avg score 1.5-2.49, top 40	Avg score 2.5-3.49, top 30	Avg score 3.5-4.49, top 20	Avg score 4.5-5.0, top 10	 States that have strong innovation ecosystems are better positioned to enhance the overall effectiveness and economic feasibility of renewable energy projects.
Workforce Availability	15%	Limited availability, low jobs	Low/moderate availability, below-average	Adequate availability, average growth	Strong availability, above-average growth	Excellent availability, exceptional growth	 A well-trained workforce will be essential in a green economy and in the management of large-scale assets.

https://openminds203x.org/

Criterion 2: Renewable Energy Resource Rubric (weight: 35%)

Metrics	Weight	Score					
		1	2	3	4	5	Rationale
Wind Energy Potential (80 meter hub height)	50%	<100,000	100,000 - 199,999	20,000 - 299,999	300,000 – 499,999	>500,000	 States with a high number of net new solar installations are more attractive for BESS market entry because batteries are typically attached to solar installations; states are scored accordingly
Solar Irradiance (kWh/m²/day)	50%	<3	3-3.99	4-4.99	5-5.99	6-6.99	 States with prices less than \$0.20 are unlikely to seek alternative power options; prices are scored accordingly.

Criterion 3: Battery Storage Potential Rubric (weight: 15%)

		Score					
Metrics	Weight	1	2	3	4	5	Rationale
Incentives	25%	No/minimal state-level storage incentives	Utility-only programs <\$200/kWh	State programs \$200-500/kWh	Multiple programs \$500-800/kWh	Comprehensive programs >\$800/kWh + permitting support	 Financial incentives can significantly impact project economics and accelerate adoption.
Interconnection Rules	10%	>55 month process, multiple studies	40-55 month process, unclear requirements, case-by-case basis	25-40 month basic standardized process	15-25 month mostly standardized process	<15 months fully standardized process/fast-track available	 Easy interconnection reduces barriers and costs associated with connecting batteries to the grid.
Market Design	35%	No wholesale participation	Single service (capacity only)	Dual services (capacity + ancillary)	Triple services (energy, capacity, ancillary)	Full market participation + retail services	• Well-designed markets with diverse value streams are essential for battery storage revenue.
Renewable Penetration	30%	<10% renewable penetration	10-20% penetration	20-30% penetration	30-40% penetration	>40% penetration	• High penetration creates need for grid flexibility

https://openminds203x.org/

